Enter your email address:

Delivered by FeedBurner

Followers

Blog Archive

Aditivos Retardadores.


Los aditivos retardadores (retardantes) se usan para retrasar la tasa de fraguado del concreto. Pero hay otras maneras de hacerlo. Uno de los métodos más prácticos es la reducción de la temperatura del concreto a través del enfriamiento del agua de la mezcla y/o de los agregados.

Esto porque las temperaturas elevadas del concreto fresco (30°C [86°F]) normalmente son la causa del aumento de la tasa de endurecimiento, que torna la colocación y el acabado del concreto más difíciles. Los retardadores no disminuyen la temperatura inicial del concreto, en cambio aumentan la tasa de sangrado (exudación) y la capacidad de sangrado del concreto.

Los aditivos retardadores son muy útiles para extender el tiempo de fraguado del concreto, pero también se usan para disminuir la pérdida de revenimiento y extender la trabajabilidad, especialmente antes de la colocación del concreto en ambientes con altas temperaturas.

El error de este enfoque se enseña en la Figura 6-15, donde la adición del retardador resultó en un aumento de la tasa de pérdida de revenimiento comparativamente con los concretos de control (Whiting y Dziedzic 1992).

Los retardadores algunas veces se usan para: (1) compensar el efecto acelerador de la temperatura sobre el fraguado del concreto; (2) retardar el fraguado inicial del concreto o de la lechada cuando ocurren condiciones de colocación difíciles o poco usuales, tales como el colado del concreto en pilares o cimentaciones de gran tamaño, la cementación de pozos de petróleo o el bombeamiento de concreto o lechadas a grandes distancias o, (3) retrasar el fraguado para la ejecución de técnicas de acabado especiales, tales como superficies con agregados expuestos.
 
Fig. 6-15. Pérdida del revenimiento, en varias temperaturas, de concretos convencionales  preparados con y sin aditivos retardadores de fraguado (Whiting y Dziezic 1992).


La reducción del agua obtenida con el aditivo retardador tipo B ASTM C 494 (AASHTO M 194) es normalmente menor que aquélla obtenida con el reductor de agua tipo A. Los aditivos tipo D se crearon para fornecer ambos, reducción y retraso.

En general, alguna reducción en la resistencia a edades tempranas (de uno a tres días) puede acompañar el uso de los retardadores. Los efectos de estos materiales sobre otras propiedades del concreto, tales como retracción, pueden ser impredecibles. Por lo tanto, se deben hacer ensayos de aceptación de los retardadores con los materiales de la obra bajo las condiciones de la obra. La clasificación y los componentes de los retardadores se presentan en la Tabla 6-1.

SuperPlastificantes para Concretos Fluidos.


Los aditivos superplastificantes (superfluidificantes, superfluidizantes) son aditivos reductores de agua de alto rango que obedecen las normas en la Tabla 6-1. En algunos países, tales como EE.UU., México y Ecuador, se puede usar el término plastificante como sinónimo del término superplastificante. Pero, en países tales como Argentina y Chile, el término superplastificante se refiere a los reductores de agua de alto rango, mientras que el término plastificante (fluidificante) se refiere a los reductores de agua convencionales y por lo tanto, en estos casos, los términos super- plastificante y plastificante no se pueden usar como sinónimos. En este texto, se empleará el término superplastificante sólo para designar los reductotes de agua de alto rango.

Estos aditivos se adicionan al concreto de revenimiento y relación agua-cemento de bajo a normal para producir un concreto fluido, con alto asentamiento (Fig. 6-9). El concreto fluido o plástico es un concreto con consistencia bien fluida, pero trabajable, y que se puede colocar con poca o ninguna vibración o compactación mientras que se lo mantiene prácticamente libre de sangrado (exudación) o segregación excesivas. Algunas aplicaciones para el concreto fluido son: (1) colado de concreto en secciones muy delgadas (Fig. 6-10), (2) áreas con poco espaciamiento del acero de refuerzo, (3) colado bajo el agua, (4) concreto bombeado, para reducir la presión de bombeamiento, (5) áreas donde no se pueden usar los métodos convencionales de consolidación y (6) para la reducción de los costos de manejo. La adición de los superplastificantes en concretos con revenimiento de 75 mm (3pulg.) permite que se produzca un concreto con asentamiento de 230 mm (9 pulg.). El concreto fluido se define por la ASTM C 1017 como un concreto que tiene un revenimiento mayor que 190 mm (71⁄2 pulg.), pero todavía mantiene sus propiedades cohesivas.


Las normas ASTM C 1017, IRAM 1663, Nch2182of1995, NMX C 255 y NTP334.088, entre otras, fornecen dos tipos de aditivos superplastificantes, (1) superplastificante y (2) superplastificantes y retardadores. Los aditivos superplastificantes normalmente son más eficientes para producir concretos fluidos que los aditivos reductores de agua regulares y de medio rango. El efecto de ciertos superplastificantes en el aumento de la trabajabilidad o en la producción de concretos fluidos es corto, de 30 a 60 minutos, siendo que a este periodo se sigue una pérdida rápida

Fig. 6-9. El concreto fluido con alto revenimiento (superior) se coloca fácilmente (medio), incluso en áreas con alta congestión de armadura (inferior). (47343, 69900, 47344)


Fig. 6-10. El concreto fluido con plastificantes se coloca fácilmente en secciones delgadas, tales como este revestimiento unido que no es más espeso que 11⁄2 diámetro de una moneda de cuarto de dólar (aproximadamente 4 cm).

de trabajabilidad o pérdida de revenimiento (Fig. 6-11). Las altas temperaturas también pueden agravar la pérdida de asentamiento. Debido a su propensión de pérdida de revenimiento, estos aditivos algunas veces se los añade al concreto en la mezcladora (hormigonera) en la obra. Estos aditivos están disponibles en la forma de líquido y de polvo. Los aditivos para la extensión de la vida de los superplastificantes, adicionados en las plantas mezcladoras, ayudan a reducir los problemas de pérdida de asentamiento.


El tiempo de fraguado se puede acelerar o retardar dependiendo de la composición química de los aditivos, su dosaje y su interacción con otros aditivos y materiales cementantes presentes en la mezcla de concreto. Algunos superplastificantes pueden retardar el fraguado de una a casi cuatro horas (Fig. 6-12). El desarrollo de la resistencia de los concretos fluidos se compara con aquél de los concretos normales (Fig. 6-13).

A pesar de que los concretos con superplastificantes son esencialmente libres de sangrado (exudación) excesivo, pruebas demostraron que algunos concretos con superplastificantes exudan más que los de control con la misma relación agua-cemento (Fig. 6-14). Sin embargo, los concretos con superplastificantes exudan mucho menos que los de control con el mismo revenimiento (revenimiento alto) y mayor contenido de agua. Los concretos con asentamiento alto, baja relación agua-cemento y superplastificante presentan mucho menos retracción (contracción) por secado que concretos convencionales con revenimiento alto y alto contenido de agua, pero este concreto con superplastificante tiene mayor retracción por secado que los convencionales con bajo asentamiento y bajo contenido de agua (Whiting 1979, Gebler 1982 y Whiting y Dziedzic 1992).

La eficiencia de los superplastificantes aumenta con el aumento de la cantidad de cemento y de finos en el concreto y también se influencia por su revenimiento inicial.

Fig. 6-11. Pérdida del revenimiento a 32°C (90°F) en concretos fluidos (TN, TM, TB y TX) comparados con mezclas de control (TC) (Whiting y Dziezic 1992).

Fig. 6-12. Fraguado retardado en concretos fluidos con plastificantes (N, M, B y X) con relación a mezclas de control (Whiting y Dziedzic 1992).

Fig. 6-13. Desarrollo de la resistencia a compresión en concretos fluidos. C es la mezcla de control. Las mezclas FN, FM y FX contienen plastificantes (Whiting y Dziezic 1992).

Fig. 6-14. Sangrado de concretos fluidos con plastificantes (N, M, B y X) comparados con mezclas de control (C) (Whiting y Dziezic 1992).



Los concretos fluidos con superplastificante pueden tener mayor cantidad de vacíos de aire atrapado y mayor factor de espaciamiento de vacíos que un concreto convencional. La pérdida de aire también puede ser significativa.


Estudios en algunos concretos fluidos, expuestos a un ambiente de humedad permanente sin ningún período de secado, indicaron una resistencia a la congelación-deshielo y al descararamiento baja (Whiting y Dziedzic 1992). Sin embargo, el desempeño de los concretos fluidos con baja relación agua-cemento se ha mostrado bueno en la mayoría de los ambientes sujetos a congelación.

Reductores de Agua de Alto Rango.


Los aditivos reductores de agua de alto rango (aditivos de alta actividad, aditivos de alto efecto) se pueden usar para conferir al concreto las mismas propiedades obtenidas por los adictivos reductores de agua normales, pero con mayor eficiencia. En la ASTM C 494 (AASHTO M 194), corresponden a los tipos F (reductor de agua) y G (reductor de agua y retardador de fraguado). Estos aditivos pueden reducir grandemente la demanda de agua y el contenido de cemento y pueden producir concretos con baja relación agua-cemento, alta resistencia y trabajabilidad normal o alta. Esta reducción de la demanda de agua está entre 12% y 30%, lo que permite producir concretos con: (1) resistencia a compresión última mayor que 715 kg/cm2 o 70 MPa (10,000 lb/pulg2), (2) desarrollo mayor de las resistencias tempranas, (3) menor penetración de los iones cloruro y (4) otras propiedades beneficiosas asociadas a baja relación agua- cemento del concreto (Fig. 6-6). Los aditivos reductores de agua de alto rango normalmente son más eficientes en la mejoría de la trabajabilidad del concreto que los aditivos reductores de agua regulares. La gran reducción del contenido de agua puede disminuir considerablemente el sangrado (exudación), resultando en dificultades

Fig. 6-6. El concreto con baja relación agua-cemento y baja permeabilidad a los cloruros, ideal para el tablero de puentes, se produce fácilmente con reductores de agua de alto rango.

Fig. 6-7. Pérdida del revenimiento a 23°C (73°F) de mezclas conteniendo reductores de agua de alto rango (N, M, B y X) comparadas con la mezcla de control (C) (Whiting y
Dziedzic 1992).

Fig. 6-8. Desarrollo de resistencia a compresión de: mezcla de control (C) y concretos con reductores de agua de alto rango (N, M y X) (Whiting y Dziedzic 1992).


Los concretos con reductores de agua de alto rango pueden tener vacíos mayores de aire incorporado y mayor factor de separación entre los vacíos si comparados con los concretos normales con aire incluido. Esto generalmente podría indicar una resistencia a congelación-deshielo menor. Sin embargo, ensayos de laboratorio han mostrado que concretos con revenimiento (asentamiento) moderado, conteniendo reductores de agua de alto rango, tienen buena durabilidad a congelación-deshielo, incluso con factor de espaciamiento de aire un poco mayor, probablemente por la menor relación agua-cemento en estos concretos.

Cuando los productos químicos usados como reductores de agua de alto rango se usan para producir un concreto fluido (plástico), normalmente se llaman plastificantes (fluidificantes) o superplastificantes (superfluidificantes, superfluidizantes) (véase la discusión abajo).

Reductores de Agua de Medio Rango.

Los reductores de agua de medio rango se emplearon por primera vez en 1984. Estos aditivos fornecen una reducción significativa de la cantidad de agua (entre 6 y 12%) para concretos con revenimiento (asentamiento) de 125 a 200 mm (5 a 8 pulg.), sin el retraso asociado a altas dosificaciones de reductores de agua convencionales (normales).

Los reductores de agua normales se indican para concretos con asentamiento de 100 a 125 mm (4 a 5 pulg.). Se puede usar el reductor de agua de medio rango para reducir la viscosidad y facilitar el acabado, mejorar la bombeabilidad y facilitar la colocación de concretos conteniendo humo de sílice y otros materiales cementantes suplementarios.

Algunos de estos aditivos pueden incorporar aire y se los puede usar en concretos con bajo asentamiento (Nmai, Schlagbaum y Violetta 1998).

Aditivos Reductores de Agua.

Los aditivos reductores de agua se usan para disminuir la cantidad de agua de mezcla necesaria para la producción de un concreto con un revenimiento (asentamiento) específico, para reducir la relación agua-cemento, para disminuir el contenido de cemento y para aumentar el revenimiento.

Los reductores de agua típicos disminuyen el contenido de agua aproximadamente del 5% al 10%. La adición al concreto del aditivo reductor de agua sin la reducción del contenido de agua puede producir una mezcla con mayor revenimiento. Sin embargo, la tasa de pérdida de revenimiento no se disminuye y en algunos casos se aumenta (Fig. 6-4). La pérdida rápida de revenimiento resulta en reducción de la trabajabilidad y en menos tiempo para la colocación del concreto.

Con los aditivos reductores de agua normalmente se obtiene un aumento de la resistencia porque se disminuye la relación agua-cemento. En concretos con los mismos contenidos de cemento y de aire y revenimiento, la resistencia a los 28 días de un concreto conteniendo un reductor de agua (y reducción de la cantidad de agua) puede ser del 10% al 25% mayor que la resistencia de un concreto sin aditivo. Apesar de la reducción del contenido de agua, los aditivos reductores de agua pueden aumentar la retracción por secado (contracción por desecación).

Fig. 6-3. Descascaramiento del concreto resultante de una carencia de aire incorporado, uso de descongelantes y prácticas inadecuadas de acabado y curado.


Fig. 6-4.  Pérdida de revenimiento a 23°C (73°F) en concretos conteniendo reductores de agua convencionales (ASTM C 494 y AASHTO M 194 Tipo D) comparados con mezclas de control (Whiting y Dziedzic 1992).

Normalmente, el efecto del aditivo reductor de agua sobre la retracción por secado es pequeño si comparado a otros factores más significantes que causan la fisuración (agrietamiento) por retracción en concreto. El uso de reductores de agua para la disminución del contenido de cemento y de agua, manteniéndose la misma relación agua-cemento, puede resultar en una resistencia a compresión igual o menor y puede aumentar la pérdida de revenimiento (asentamiento) en dos o más veces (Whiting y Dziedzic 1992).


Los reductores de agua disminuyen, aumentan o no tienen ningún efecto sobre el sangrado (exudación), dependiendo de su composición química. La disminución del sangrado puede dificultar las operaciones de acabado de superficies planas cuando las condiciones de secado son rápidas. Los aditivos reductores de agua se pueden modificar para ofrecer varios grados de retraso, mientras que otros no afectan considerablemente el tiempo de fraguado.

Por ejemplo, el aditivo tipo Ade la ASTM C 494 (AASHTO M 194) puede tener un pequeño efecto sobre el tiempo de fraguado, el tipo E lo acelera y el tipo D normalmente lo retarda de 1 a 3 horas (Fig. 6-5). Algunos aditivos reductores de agua también pueden incorporar aire. Los aditivos a base de lignina pueden aumentar el contenido de aire en 1% a 2%. Los concretos con reductores de agua habitualmente tienen buena retención de aire (Tabla 6-2).

La eficiencia de los reductores de agua es función de su composición química, de la temperatura del concreto, de la finura y composición del cemento, del contenido de cemento y de la presencia de otros aditivos. La clasificación y los componentes de los reductores de agua se presentan en la Tabla 6-1. Para más información sobre los efectos de los reductores de agua sobre las propiedades del concreto, consulte Whiting y Dziedzic (1992).


Fig. 6-5. Retraso del fraguado en mezclas con aditivo reductor de agua con relación a la mezcla de control. Los concretos L y H contienen reductores de agua convencionales y los concretos N, M, B y X contienen reductores de agua de alto rango.


Tabla 6-2. Pérdida de Aire en Mezclas de Concreto con Reducido Contenido de Cemento

Aditivos Inclusores de Aire.


Los aditivos inclusores de aire (incorporadores de aire) se usan para introducir y estabilizar, de propósito, burbujas microscópicas de aire en el concreto. El inclusor de aire mejora considerablemente la durabilidad de concretos expuestos a ciclos de congelación-deshielo (hielo-deshielo) (Fig. 6-2). El aire incorporado mejora la resistencia del concreto al descascaramiento de la superficie causado por el uso de productos descongelantes (anticongelantes) (Fig. 6-3). Además, también se mejora la trabajabilidad del concreto fresco y se reducen o eliminan tanto la segregación como el sangrado (exudación).

El concreto con aire incluido contiene diminutas burbujas de aire distribuidas uniformemente por toda la pasta de cemento. Se puede producir el aire incorporado en el concreto a través del uso de cemento con inclusor de aire, de aditivos inclusores de aire o de la combinación de ambos métodos. Un cemento con inclusor de aire es un cemento portland con adiciones de inclusor de aire, las cuales se muelen conjuntamente con el clínker durante la fabricación del cemento. Por otro lado, el aditivo incorporador de aire se lo adiciona directamente a los materiales del concreto antes o durante el mezclado.

Los ingredientes básicos usados en los aditivos incorporadores de aire se listan en la Tabla 6-1, bien como sus especificaciones y los métodos de ensayo. Además de aquellas normas hay también la ASTM C 233 (AASHTO M 154 y T 157) y la COVENIN 0355.

Los inclusores de aire usados en la producción del cemento con inclusor de aire deben obedecer la ASTM C 226. Los requisitos de los cementos con inclusor de aire se presentan en la ASTM C 150 y AASHTO M 85. Para más información, Concretos con Aire Incluido, Klieger (1996) y Whiting y Nagi (1998).

Fig. 6-2. Daños causados por la congelación (frag-
mentación) en la juntas de un pavimento (superior),
fisuración por congelación inducida cerca de las juntas
(inferior) y ampliación de la vista de las fisuras (foto menor,
en la parte interna).

Tabla 6-1. Aditivos de Concreto Según su Clasificación